A database framework for rapid screening of structure-function relationships in PFAS chemistry



  • 1.

    Buck, R. C. et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 7, 513–541 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Organisation for Economic Co-operation Development. Toward a New Comprehensive Global Database of Per-and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of per-and Polyfluoroalkyl Substances (PFASs). (2018).

  • 3.

    Cousins, I. T. et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci.: Process. Impacts 21, 1803–1815 (2019).

    CAS 

    Google Scholar
     

  • 4.

    Hu, X. C. et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 3, 344–350 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Giesy, J. P. & Kannan, K. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environ. Sci. Technol. 35, 1339–1342 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Hansen, K. J., Clemen, L. A., Ellefson, M. E. & Johnson, H. O. Compound-Specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrices. Environ. Sci. Technol. 35, 766–770 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Ritscher, A. et al. Zurich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environ. Health Perspect. 126, 084502 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Wang, Z., Cousins, I. T., Scheringer, M. & Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ. Int. 75, 172–179 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Wang, Z., Cousins, I. T., Scheringer, M. & Hungerbühler, K. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int. 60, 242–248 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Wang, Z., Cousins, I. T., Scheringer, M., Buck, R. C. & Hungerbühler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: The remaining pieces of the puzzle. Environ. Int. 69, 166–176 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Wang, Z., Cousins, I. T., Berger, U., Hungerbühler, K. & Scheringer, M. Comparative assessment of the environmental hazards of and exposure to perfluoroalkyl phosphonic and phosphinic acids (PFPAs and PFPiAs): Current knowledge, gaps, challenges and research needs. Environ. Int. 89–90, 235–247 (2016).

    Article 

    Google Scholar
     

  • 12.

    Liu, Y., D’Agostino, L. A., Qu, G., Jiang, G. & Martin, J. W. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends Anal. Chem. 121, 115420 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Wang, Z., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Kibbey, T. C. G., Jabrzemski, R. & O’Carroll, D. M. Supervised machine learning for source allocation of per- and polyfluoroalkyl substances (PFAS) in environmental samples. Chemosphere 252, 126593 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Raza, A. et al. A Machine Learning Approach for Predicting Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) for Their Efficient Treatment and Removal. Environ. Sci. Technol. Lett. 6, 624–629 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Cheng, W. & Ng, C. A. Using Machine Learning to Classify Bioactivity for 3486 Per- and Polyfluoroalkyl Substances (PFASs) from the OECD List. Environ. Sci. Technol. 53, 13970–13980 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Duda, R. O., Hart, P. E. & Stork, D. G. Pattern classification and scene analysis. 3 (Wiley, New York, 1973).


    Google Scholar
     

  • 18.

    Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Maaten, L. v. d. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res 9, 2579–2605 (2008).

    ADS 
    MATH 

    Google Scholar
     

  • 21.

    Williams, A. J. et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61–61 (2017).

    Article 

    Google Scholar
     

  • 22.

    Sha, B., Schymanski, E. L., Ruttkies, C., Cousins, I. T. & Wang, Z. Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environ. Sci.: Process. Impacts 21, 1835–1851 (2019).

    CAS 

    Google Scholar
     

  • 23.

    Nuñez, M. Exploring materials band structure space with unsupervised machine learning. Comput. Mater. Sci. 158, 117–123 (2019).

    Article 

    Google Scholar
     

  • 24.

    Wattenberg, M., Viégas, F. & Johnson, I. How to use t-SNE effectively. Distill 1, e2 (2016).

    Article 

    Google Scholar
     

  • 25.

    Weiss, J. M. et al. Competitive Binding of Poly- and Perfluorinated Compounds to the Thyroid Hormone Transport Protein Transthyretin. Toxicol. Sci. 109, 206–216 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Patlewicz, G. et al. A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing. Environmental Health Perspectives 127, 014501 (2019).

    Article 

    Google Scholar
     

  • 27.

    Dančík, V. et al. Connecting Small Molecules with Similar Assay Performance Profiles Leads to New Biological Hypotheses. J. Biomol. Screen. 19, 771–781 (2014).

    Article 

    Google Scholar
     

  • 28.

    Forsthuber, M. et al. Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environ. Int. 137, 105324 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Behr, A.-C., Plinsch, C., Braeuning, A. & Buhrke, T. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol. In Vitro 62, 104700 (2020).

    Article 

    Google Scholar
     

  • 30.

    Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 31.

    Su, A. & Rajan, K. A Database Framework for Rapid Screening of Structure-Function Relationships in PFAS Chemistry. figshare https://doi.org/10.6084/m9.figshare.c.5043566 (2020).



  • Source link

    xandoblogs

    An open minded personality.. fun to be with, because of my positive vibes. God fearing, for without God I am nothing.. Moved with compassion when dealing with you, not selfish or self-centered...

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    error

    Enjoy this blog? Please spread the word :)